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S. Sardari* and M. Dezfulian 

Department of Biotechnology, Pasteur Institute, #69 Pasteur Ave., Tehran, Iran 13164 

Abstract: The existing chemical data such as those created by high throughput screening (HTS), structure-activity rela-
tionship (SAR) studies are converted into information as a result of storage and registration. Accessibility, manipulation, 
and data mining of such information make up the knowledge for drug development. Cheminformatics, exploiting the 
combination of chemical structural knowledge, biological screening, and data mining approaches is used to guide drug 
discovery and development and would assist by integrating complex series of rational selection of designed compounds 
with drug-like properties, building smarter focused libraries. This paper presents cheminformatics approaches and 
tools for designing and data mining of chemical databases and information. Many examples of success in lead identifica-
tion and optimization in the area of anti-infective therapy have been discussed.  
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1. INTRODUCTION 

 Drug research is a unique multi-disciplinary process 
heading towards the development of novel therapeutic agents 
in areas of medical need. The drug research can be divided 
functionally into two stages: discovery/design and develop-
ment. Drug discovery/design consists of identification and 
characterization of new targets (enzymes or receptors), syn-
thesis of new lead molecules, screening of new lead mole-
cules for in vitro and/or in vivo biological activities, and 
physicochemical characterization of leads. Drug develop-
ment focuses on evaluation of safety, toxicity and efficacy of 
new drug molecules and formulation combinations [1]. 

 The random screening methods of pharmaceutical com-
ponents have not been very successful in identifying anti-
parasitic compounds. One of the different approaches to 
search for novel pharmacological agents emerged from the 
field of combinatorial chemistry [2]. This technology in-
cludes a variety of techniques by which very large numbers 
of structurally distinct molecules are synthesized in a time 
and resource-effective way. The resulting pool of molecules 
reflects a library of diverse three-dimensional structures that 
is subsequently scrutinized for its pharmacological or diag-
nostic potential [3]. 

 Cheminformatics is seen as an extension of chemical 
information, which is a well established concept covering 
many areas that employ chemical structures, data storage and 
computational methods, such as compound registration data-
bases, on-line chemical literature, SAR analysis and mole-
cule-property calculation [4]. This concept should not be 
mistaken with chemometrics which is the application of sta-
tistics to the analysis of chemical data from organic, analyti-
cal or medicinal chemistry and design of chemical experi-
ments and simulations.  

 In addition to combinatorial chemistry, powerful compu-
tational methodologies for drug design and drug database  

*Address correspondence to this author at the Department of Biotechnology, 
Pasteur Institute, #69 Pasteur Ave., Tehran, Iran 13164;  
E-mail: ssardari@hotmail.com 

screening and selection are now available. Equation systems 
linking quantitative structure-activity relationship, QSAR, 
studies are particularly relevant, and application of the 
mathematical models thereby obtained to large libraries of 
computer-generated compounds is known as virtual compu-
tational, or in silico screening. An important feature in these 
methods is the use of good structural descriptors that are 
representative of the molecular features responsible for the 
relevant biological activity; a very useful technique for de-
scribing molecular structure is molecular topology, a two-
dimensional QSAR method which takes into account the 
internal atomic arrangement of compounds. The structure of 
each molecule can be represented by specific subsets of 
topological indices (TIs) [5]. Correlating all the advances in 
cheminformatics is better understood if it is linked to the 
progress in molecular biology.  

 The increasing availability of the entire genetic code of 
microorganisms forms a considerable potential to the drug 
discovery process. Most drugs now arise through discovery 
programs that begin with identification of a biomolecular 
target of potential therapeutic value through biological stud-
ies including, for example, analysis of mice with gene 
knockouts. Functional genomics, proteomics and computa-
tional biology offer promises for the future to prioritize 
genes that should be the focus of more intensive studies. In 
addition, they bring new directions that will be both distinct 
and complementary to traditional approaches. Functional 
genomics is devoted to the development and application of 
methods which allow investigators to efficiently study many 
genes simultaneously. For example, changes in gene expres-
sion can be monitored through the application of DNA mi-
croarray technology across thousands of genes [6]. Similarly, 
proteomic methods that allow investigators to view micro-
bial protein expression are now beginning to be employed. 
Lastly, as more genes are characterized functionally in mi-
croorganisms, investigators are increasingly able to bear 
powerful computational approaches to identify candidate 
genes for more intensive analysis. 

 Applications of the above-mentioned methods should 
lead to the validation of candidate virulence genes. Once a 
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candidate virulence gene has been identified, and perhaps its 
expression is modified, tests to confirm its role in virulence 
are necessary. First, the candidate gene must be reasonably 
involved in processes thought to be essential to virulence; 
second, inactivation of the gene should lead to a loss of viru-
lence, and third, restoration of gene function should lead to 
restoration of virulence.  

 The use of computers and computational methods influ-
ences all aspects of drug discovery today. Computing tools 
provide the advantage of delivering new drug candidates 
faster and cheaper. Computer modeling algorithms and mo-
lecular simulations are used to predict QSAR and these data 
are used to optimize the design of new drugs by making a 
corelational model. Generally, successful modeling is rooted 
in the ability to identify and thereafter incorporate or predict 
the role of specific functional groups in the formation of the 
complex between drug and target. However, molecular mod-
eling involving the drug interactions is limited by a lack of 
knowledge about the target structure, convenient 3D struc-
ture and available experimental data to verify these models. 

 One of the well-known processes using computational 
information techniques is structure-based drug design 
(SBDD). In SBDD, full structural knowledge of the protein 
target molecule provides information on how a potential 
drug interacts with the target. The success of SBDD, which 
has contributed to the introduction of 50 compounds into 
clinical trials and to numerous drug approvals, is well docu-
mented [7]. In SBDD, the role of computation consists of 
structure refinement using simulated annealing, development 
of the underlying molecular mechanics (MM), structure dis-
play, and building and MM evaluation of analogs.  

 The lack of development of new antimicrobial drugs to-
gether with increased resistance among the pathogenic and 
opportunistic microorganisms has been recognized as a po-
tential threat to the public health [8-12]. In the area of anti-
infective therapy, microorganism selection criteria include 
organism of sufficient prevalence in population with disease 
under study, organisms causes serious and severe disease, 
drug to which organism is resistant is commonly used in 
disease under study, limited available therapies as a result of 
multidrug-resistance, drug used to control spread of disease 
in population, and clinical correlation of in vitro resistance 
with poor clinical outcome [13]. In this mini-review, our 
focus would be the application of cheminformatics as has 
been largely influenced by computational techniques in the 
active research of anti-infective agents discovery, in which 
molecular libraries are screened, and the resulting leads are 
optimized in a cycle that features design, synthesis and as-
saying of numerous analogs. 

2. TARGET SELECTION 

 The topic of target and target selection is one of the old-
est subjects in drug discovery and normally design of a 
chemical scaffold would follow to produce compounds for 
screening. These processes originated from the knowledge 
gained through perceptive of some of the biological path-
ways and the screening that was done for an effect in a cell 
or even cells. Recently, many complete microbial genome 
sequences have been published and analyzed; Saccharomy-
ces jannaschii, Escherichia coli, Haemophilus influenzae,

Mycoplasma genitalium, Methanococcus janaschii and My-
coplasma pneumoniae are some of those organisms [14-18]. 
Data generated using genome projects are almost freely 
available. This information and the use of genomics and bio-
informatics have had a great impact on drug discovery espe-
cially in the area of target selection. A number of conven-
tional methods which can be used in target selection and 
target validation are shown in Table 1 with the emphasis on 
computer based target selection methods. 

 In the modern world of drug discovery, genetic informa-
tion is now making the way for identification of single mo-
lecular targets. These are gained through knowledge of the 
genes of specific cell phenotypes that encode proteins that 
might be concerned with the pathogenesis of a particular 
disease state. The acceleration that has been made in genome 
sequencing and the identification of expressed genes will 
lead to the recognition of thousands of new targets, many of 
which will be applicable to the onset and resolution of a dis-
ease. Diverse set of genomic approaches for target selection 
is available nowadays. Target selection if not the major chal-
lenge, is surely one of the most important challenges in drug 
discovery for the treatment of infectious diseases. This can 
be due to the identification of targets that are essential for the 
microbial survival, but which are absent, or significantly 
divergent, in their mammalian host. For viral diseases, the 
small genome and relatively few viral proteins make this 
process fairly straightforward. However, for bacterial and 
fungal pathogens, there is a much larger potential pool from 
which to select targets. Various large-scale mutagenesis ap-
proaches are available for identification of essential fungal 
and bacterial genes [39]. A good example of the use of mi-
croarray for target selection would be the work carried out 
by Wilson [29] in which changes in gene expression after 
isoniazid compound treatment in Mycobacterium tuberculo-
sis were used as being indicative of the mechanism-of-action 
of the compound. By examining the gene expression induced 
after treatment with an antimicrobial compound with uniden-
tified mechanism, it will be feasible to deduce its mecha-
nism-of-action. The studied alteration made in gene expres-
sion induced in Mycobacterium tuberculosis or other organ-
isms can be used as a measuring tool for development of 
possible drug candidates.  

 Genomics has also been used for the identification of 
protein targets for vaccine development. Potential virulence 
factors can be identified by comparative genomics or in vivo 
methods. In addition, several computer programs are now 
available to search for secreted or membrane proteins that 
could be putative antigens. This in silico approach has been 
applied to the selection of antigens for Group B Neisseria 
meningitidis [38, 40] vaccine development and Chlamydia 
pneumoniae vaccine development [41]. 

 An earlier work showed promising results had been on a 
software called Computer Aided Target Selection (CATS). 
This software was used to study the Saccharomyces cere-
visiae genome published in 1997 by Mewes [42]. The entire 
DNA sequence of the genome of S. cerevisiae was com-
pleted in 1996 and represents the first entirely decoded eu-
karyotic genome. The main human pathogenic fungi such as 
Candida albicans are closely related to S. cerevisiae on a 
molecular level, the sequence information can be used to 
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identify and prioritize those genes that are most suitable as 
targets for antimycotic drug discovery. CATS allows an 
automated evaluation of all S. cerevisiae genes to be carried 
out with regard to their suitability as antifungal targets. The 
selected targets that are potent as antifungal targets are con-
sidered and a set of parameters generated and used in target 
selection. These parameters were named ‘Quality’, ‘Occur-
rence’, ‘Specificity’ and ‘Assay development’ then on the 
basis of mentioned parameters the CATS program calculates 
the total score. On the basis of these scores a number of 25 
genes are selected, a few being previously described as good 
antifungal targets, the elongation factor 3 and the proton P-
type ATPase, and the rest being novel targets like trehalose 
phosphate synthase, and SEC14 (essential protein used in 
production of secretary vesicles). To test the scoring, known 
antifungal targets are used and ranked using the above pa-
rameters, which showed promising results [34]. In this re-
spect, it could be pointed out that CATS software can be 
used in order to reduce the targets, to be assessed manually 
to meaningful number and then choose the novel and most 
suitable target.  

3. DATABASE 

 One could say the factor that revolutionized drug design 
was the emergence of databases. After the explosion in the 
amount of data that was generated through combinatorial 
chemistry (CC), a large number of compounds were made 
and the need arise to screen these molecules in a short time. 
The emerging challenges could slow down the process, for 
example, of chirality or scale of the synthetic compounds 
that were made or in terms of CC, a block of compounds that 
was not suitable as a drug nominee. The details for such da-
tabases can be found elsewhere [43] but the applications of 
such databases are shown wherever possible. A few publicly 
available databases are shown in Table 2. The structures of 

the molecules found in these databases can be in 1D e.g., 
SMILES, 2D, or in some cases even in 3D format. Using 
data bases could lead to successful cases; for example the 
structure of a non-peptide inhibitor bound to HIV-1 protease 
was developed after the screening of the Cambridge Struc-
tural Database using the original compound, haloperidol, 
through a shape complementarily algorithm [44].  

3.1. 2D Search in Databases 

 There are various classifications for molecular descrip-
tors. One of the most commonly used is the identification of 
dimension used in the descriptor, such as 1D, 2D, and 3D. 
1D algorithms are usually simpler and can be easily applied; 
however, the versatility of 1D descriptor usage is also lim-
ited since the specificity of chemical functions are not ex-
pressed. The 2D and 3D factors would contribute to major 
arrangements and spatial comparing factors. By defining a 
molecule as a graph it is possible to define a substructure as 
a sub-graph of such definition. An easy way to achieve a 
substructure study is to use a predefined record of fragments 
to see if each substructure is in a collection of molecules. 2D 
substructure database screening is comprised of the follow-
ing steps: first, searching for a structure that grasp one or 
more fragment(s) in a virtual database, a procedure that 
would only takes few seconds in a database containing mil-
lions of molecules. After a query has finished, typically 
thousands of structure candidates that have been found are 
then reduced using another query by adding more substruc-
tures. In this way, the number of candidates will be further 
reduced. On the contrary of what is thought, 2D substructure 
search makes a powerful method for finding novel com-
pounds which have no similarity in shape (mostly) with the 
original compounds [4, 51-52]. Forino designed, synthe-
sized, and tested small-molecule inhibitors that were highly 
potent and selective against Bacillus anthracis lethal factor; 

Table 1. Conventional Methods for the Identification of Targets in Drug Discovery 

Technology  Application Reference 

Signature- tagged 
mutagenesis 

Identification of genes required for pathogen survival in animal models [19-23] 

In vivo expression tech-
nology 

Identification of pathogen genes induced in vivo [24, 25] 

Microarrays - Understanding host response to pathogens 

- Correlating gene expression with pathogenicity 

- Identifying molecular targets of antimicrobial compounds 

- Inferring function of unknown genes 

[26-32] 

Comparative genomics - Identification of pathogenicity related genes 

- Identification of antigens for vaccine development 

- Selecting targets conserved across multiple pathogens 

- Selecting targets with lowest homology to human proteins 

[33-36] 

Structural genomics - Selecting targets conserved across multiple pathogens 

- Selecting targets with lowest homology to human proteins 

- Inferring function of unknown proteins 

[37, 38] 
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using this method, he identified 22 compounds (among ~ 
680 analogues) applying a 2D substructure search [53]. 

3.2. 3D Searching in Databases 

 2D Substructure despite being powerful method has its 
limitations. Does a target recognize a substructure or an en-
tire molecule? The three dimensional stereoelectronic fea-
tures of the structure play a key role in the binding affinity of 
the molecule to its target. There are different types of 3D 
database searching: considering whether the structure of the 
target molecule is available or not, there are two kinds of 
approaches. In case that the target has a known structure 
obtained by NMR study, crystallography or comparative 
modeling [54], molecules fitting that structure or those of the 
known ligand could be searched. However, lack of availabil-
ity of such data means we have to draw a pharmacophore 
which is an indicative of some of the key features of a set of 
active molecules [55-56]. 

3.2.1. Pharmacophores 

 IUPAC describes receptor mapping or better known as 
pharmacophore mapping, as a procedure that is used to ex-
press the geometric and/or electronic characteristics of a 
binding site when inadequate structural data of the binding 
site are present. Narrative of a pharmacophore claims a well-
organized method for the study of the data available for the 
features that affect the binding of the molecule. The difficul-
ties faced when trying to design a pharmacophore can be 
clustered into two categories. The first one is the evaluation 
of the ligands, superimposition, molecular likeness and con-
formational aspects. The second difficulty is the fact that a 
logical pharmacophore has to include some unique effects 
that take place in actual binding which generally are not un-
derstood by means of a straightforward comparative analysis 
of the ligands [57]. Recently, database-pharmacophore sieves 
have been launched that offer simple sensitive conventions 
to categorize impending drugs [58]. A simple scheme repre-
senting a pharmacophore can be categorized in a few steps. 
The first step is deriving a 3D pharmacophore using 3D 
structures of the ligands or the target (binding site) then to 
search a 3D database. If a compound is found, it can be op-
timized so that a new lead is found or a de novo design to 
build a molecule for the pharmacophore is applied. This part 
will be discussed more comprehensively in the de novo sec-

tion. Conformational flexibility is one of the foremost diffi-
culties in pharmacophore generation, because the molecular 
conformations under biological conditions are not known. 
Several softwares are used for building pharmacophore 
based on ligand conformations. Catalyst (Accelrys, Inc.) [59] 
is one of the most frequently used softwares; swift 3D data-
base exploring algorithms along with flexibility throughout 
pharmacophore creation is the main reason for its numerous 
use. DiscoTech, and Gasp (Tripos, Inc.) are also pharma-
cophore generating softwares which have also shown win-
ning tales [60-62]. What makes these softwares differ from 
each other is mostly the algorithm that lies behind the phar-
macophore generation. When no information on the ligand is 
available using the structure based algorithm within soft-
wares such as Cerius package (Accelrys, Inc.), one thing to 
try is building binding-site pharmacophore. First of all, using 
LUDI algorithm, an interaction site calculation is carried out, 
then the next step is to cluster the hydrogen bond donors 
(HBD), hydrogen bond acceptors (HBA) and hydrophobic 
regions and the last step is to convert the obtained clusters 
into a characteristic pharmacophore which will represents the 
HBA, HBD, and hydrophobic regions [63]. 

 Zhang introduced a recent pharmacophore based virtual 
screening approach to identify SARS-coronavirus proteinase 
inhibitors. That was a victorious approach given that among 
the found by the screening are six compounds that already 
exhibited anti-SARS-CoV activity experimentally [64]. In 
another study, Dayam used beta-diketo acid pharmacophore 
hypothesis for the discovery of a novel class of HIV-1 inte-
grase inhibitors (IN). They found that compounds containing 
both salicylic acid and a 2-thioxo-4-thiazolidinone (rho-
danine) group showed significant inhibitory potency against 
integrase, while the presence of either salicylic acid or a rho-
danine group alone did not present such activity [65]. Steindl 
[66] used neuraminidase inhibitors of influenza virus to de-
liver structure-based pharmacophore hypotheses using in 
virtual screening of chemical databases. The unique aspect of 
this work is the strategies they used to prevail over the limi-
tations of Catalyst data format, since multiple interactions  
of one chemical function cannot be included at the same 
time. Brenk [67] developed a pharmacophore hypothesis for 
tRNA-guanine transglycosylase inhibitors for Shigellae, and 
several new inhibitors of micro molar binding affinity were 
discovered. 

Table 2. The Publicly Available Compound Databases 

Database Compounds/Entry Number Reference or Website 

The Cambridge Structural Database  355,000 crystal structures of organic and metal-
organic compounds 

 [45] 

ChemDB 4.1 million   [46] 

Medchem Database  55,000   [47] 

ChemIDplus 370,000   [48] 

NCI  400,000   [49] 

ZINC 3.3 million   [50] 
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3.2.2. Docking 

 Molecular recognition is the fundamental basis for drug 
action. Emil Fischer, in 1894 [68], first proposed the ‘lock-
and-key’ principle whereby steric and electronic comple-
mentarily between proteins and their ligands drive the com-
plexation process. Molecular docking algorithms attempt to 
create and recognize the most harmonizing match between a 
ligand and its macromolecular target. There are three steps to 
the docking process: study of the target and the ligand, crea-
tion of recognized complexes (sampling), and calculation of 
the ‘fitness’ of the complex (scoring) [69]. Various programs 
are used in a docking algorithm such as DOCK, FLEXX, 
FRED, GLIDE, GOLD, SLIDE, SURFLEX, and QXP. The 
main features of such docking tools have been explained 
below and drawn separately in Table 3. The usage of these 
docking softwares would be different and our survey shows 
that the percentage of applications in different aspects of 
drug discovery according to collective citation in Pubmed 
and Scirus is highest for DOCK, AUTODOCK, GOLD and 
FLEXX respectively. It is noteworthy to mention that the 
capability to precisely place a ligand in the binding site of 

the target under study is the key to a winning breakdown. In 
a recent study [70], Kellenberger performed a comparative 
study on eight docking softwares for their ability to fit the 
ligand to the target. The study showed that the best softwares 
for docking accurately based on their tendency to recover the 
X-ray pose of 100 small-molecular-weight ligands, and for 
their capacity to discriminate known inhibitors of an enzyme 
(thymidine kinase) from randomly chosen "drug-like" mole-
cules were GLIDE, GOLD, and SURFLEX. A key factor 
that plays a major role in docking accuracy is the considera-
tion of ligand and protein flexibility. In another study con-
ducted by Erickson [71], the ligand flexibility using four 
docking algorithms, DOCK, FlexX, GOLD, and CDOCKER 
was applied. Each algorithm performed well with an accu-
racy of over 50%, but the finding showed that docking accu-
racy decreases significantly for ligands with eight or more 
rotatable bonds. Only CDOCKER algorithm was able to 
accurately dock most of those ligands with eight or more 
rotatable bonds to include an accuracy of 71% [71]. For con-
sideration of receptor flexibility multiple protein structures 
(MPS) would be the best option [72]. These structures can 
come from NMR studies, multiple crystal structures, or mul-

Table 3. Comparison of some of the Docking Programs  

Software Docking Algorithm  Scoring Utility Ligand 

Flexibility 

Target 

Flexibility  

Web Address Representative Applica-

tions in Anti-Infective 

Drug Design 

Dock Incremental Contact score, Force field 

interaction, Electrostatic 
energy score (DelPhi) 

http://www.cmpharm.

ucsf.edu/kuntz/ 

AmpC -Lactamase [77]; 

Thymidylate synthase [81] 

FlexX Incremental Empiric score http://cartan.gmd.de/ 
flexx/ 

Dihydrofolate reductase 
[82]; Deoxycytidine kinase 

[83]; Metallo-beta-

lactamase [84] 

SLIDE Conformational 
groups 

Empiric score http://www.bch.msu. 
edu/labs/kuhn 

Dihydrofolate reductase 
[85] 

AutoDock Monte Carlo simu-
lated annealing; The 

Lamarckian Genetic 

Algorithm (LGA)  

Force field interaction http://www.scripps.ed
u/pub/olson-

web/doc/autodock/ 

BMS-378806 [86]; Reverse 
transcriptase HIV-1  [80] 

LigandFit Monte Carlo Empiric score http://www.accelrys.c

om/insight/affinity. 
html 

CDC25 phosphatase inhibi-

tory activity [87]; Oxa-
zolidine-2-thiones [88] 

Fred Conformational 
groups 

Gaussian score or/and 
Pragmatic score 

http://www.eyesopen.
com

No reported application 

Gold Genetic algorithm Empiric score  Partial  http://www.ccdc.cam.a
c.uk/prods/gold/index. 

html 

Tripeptidyl peptidase II 
[89]; Lactate dehydrogena-

se [90] 

Glide Exhaustive Monte 

Carlo 

Empiric score http://www.schrodinger

.com/Products/glide. 
html 

No reported application 

ICM Brownian, local 
minimization 

Force field and Empiric 
score 

http://abagyan.scripps. 
edu/ 

No reported application 
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tiple conformations generated by computational routines. In 
general, the techniques can be divided into methods that  
employ experimentally determined structures and those that 
use computer-generated conformations. The computational 
methods that have been used include molecular-dynamics 
routines, low-frequency normal modes, simulated annealing, 
and other techniques [73]. One of the first works on MPS 
was carried out by Kuntz using DOCK software [74]. In this 
respect, the other package is FlexE, which can take account 
of protein flexibility by means of MPS from crystallographic 
data [75]. 

Scoring Functions

 A scoring function assists in calculating the exact fitness 
score, although the present algorithms might not allow a very 
close to exact level. Scoring functions are based on the hy-
pothesis that free energy can be expressed as a sum of inde-
pendent terms. From this point of view, all scoring functions 
experience a considerable size reliance of the score: the 
larger a molecule, the higher is the probability that it is 
scored favorably. Although this simple model of molecular 
identification has been extremely valuable, one should keep 
in mind that good complementarities between receptor and 
ligand is certainly a qualification of a binding and not an 
entirely realistic fact [76]. Shoichet [77] used a database of 
over 200,000 compounds for docking in the active site of 
AmpC -lactamase to identify potential inhibitors. After 
testing 56 of the best scoring compounds, three had Ki values 
of 650 M or better. James [78] developed a computational 
approach to screen a large chemical library for binding to a 
three-dimensional RNA structure of HIV-1. From the ranked 
list of compounds predicted to bind TAR, 43 were assayed 
for inhibition of the Tat-TAR interaction via electrophoretic 
mobility shift assays. Eleven compounds inhibited the Tat-
TAR interaction with a value of between 0.1 and 1 M, and 
some inhibited Tat transactivation in cells [78]. Davies [79] 
carried out a novel study on NAT (N-acetyltransferases) ac-
tivity. This assay has been utilized to identify novel sub-
strates for pure NAT from Salmonella typhimurium and My-
cobacterium smegmatis, which show a relationship between 
the lipophilicity of the arylamine and its activity as a sub-
strate, that lead to finding an endogenous role of NAT in the 
protection of bacteria from aromatic and lipophilic toxins. 
The results showed that NAT could be a potential drug target 
[79]. Another approach would be to evaluate a given inhibi-
tor and study the coordinates of the molecule when binding 
to the target site. Potent non-nucleoside reverse transcriptase 
inhibitors (NNRTIs) of the pyridinone derivative type were 
docked by Castillo & his colleagues [80] into nine NNRTIs 
binding pockets of HIV-1 reverse transcriptase (RT) struc-
tures. The docking results indicated that pyridinone ana-
logues adopt a butterfly conformation and share the same 
binding mode as the inhibitors co-crystallized with reverse 
transcriptase in the pocket geometries of nevirapine.  

3.2.3. De Novo Drug Design 

 When searching a database, the bottleneck is that there is 
no access to novel virtual compounds but with de novo de-
sign it is possible to generate novel compounds based on 3D 
pharmacophore or 3D structure of receptor binding site. 
There are two basic approaches toward de novo design, the 

first one called inside out, in which the molecules are grown 
in the binding site and then scored using various energetic 
functions. The second approach is based on screening of the 
binding site to determine potential binding places such as 
HBD, HBA and hydrophobic regions. The next step would 
be to evaluate which binding groups would bind tightly and 
the last step is comparing the connection of these functional 
groups together.  

 In 1996 and 1997, the first studies based on de novo
methods for generation of enzyme inhibitors were published. 
De novo methods have been used to modify and significantly 
improve the binding affinity of known inhibitors. A number 
of cases of successful de novo design of a protein ligand 
have already been disclosed [91]. These studies show that 
indeed this approach is feasible and can lead to useful new 
structures. In addition, methods are being developed for the 
automatic computer generation of virtual molecular libraries 
which can be searched to identify molecules to match a 
pharmacophore or fit into a binding site, which have been 
discussed in the pharmacophore section. One of the most 
widely used programs for de novo design is GRID. This 
software allows a gird to be implanted on the binding site. A 
probe is then placed on the vertices of the grid and the inter-
action energy of the probe is then calculated and using the 
interaction energies a novel structure is built [92] which then 
can be evaluated using docking algorithms. The final step is 
to make a molecule that actually exists and can be synthe-
sized easily. Even peptides can be built using these de novo
methods, but using the inside out scheme would be easier for 
these kinds of studies due to its simplicity when coming 
down to the synthesis of the compounds [93].  

 LeapFrog, a de novo drug design program was used to 
design novel, potent, and selective inhibitors of HIV-1 inte-
grase [94]. The designed compounds were synthesized and 
tested for in vitro inhibition of HIV-1 integrase. Out of the 
25 compounds that were designed and synthesized, four 
molecules showed moderate to low inhibition of HIV-1 inte-
grase for 3'-processing and 3'-strand transfer activities. 
Nonetheless, these compounds possess structural features not 
seen in known HIV-1 integrase inhibitors and thus can serve 
as excellent leads for further optimization of anti-HIV-1 in-
tegrase activity [94].

 De novo ligand design methods have been applied to the 
X-ray crystal structure of bacterial neuraminidase in the 
presence of some selected water molecules. The results 
showed that the complete removal of all bound water mole-
cules can lead to difficulties in generating any potential 
ligands. Although with limitation, this example shows that, 
only in some cases, bound water molecules can be more ac-
cessible for hydrogen bonding to an incoming ligand than 
the actual protein binding sitepoints associated with them. 
From the point of view of de novo ligand design, water 
molecules can thus act as versatile amphiprotic hydrogen-
bonding site points and reduce the conformational con-
straints of a particular binding site [95].  

 MCSS and GRID are two methods, based on signifi-
cantly different algorithms, which are used for this purpose. 
A comparison of the two methods for the same functional 
groups has been reported [96]. Calculations were performed 
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for nonpolar and polar functional groups in the internal hy-
drophobic pocket of the poliovirus capsid protein, and on the 
binding surface of the src SH3 domain. The two approaches 
are shown to agree qualitatively; for example the global 
characteristics of the functional group maps generated by 
MCSS and GRID are similar. However, there are significant 
differences in the relative interaction energies of the two sets 
of minima, a consequence of the different functional form 
used to evaluate polar interactions (electrostatics and hydro-
gen bonding) in the two methods. The single sphere repre-
sentation used by GRID affords only positional information, 
supplemented by the identification of hydrogen bonding in-
teractions. By contrast, the multi-atom representation of 
most MCSS groups yields in both positional and orienta-
tional information. The two methods are most similar for 
small functional groups, while for larger functional groups 
MCSS yields results consistent with GRID but superior in 
detail. These results are in accordance with the somewhat 
different purposes for which the two methods were devel-
oped. GRID has been used mainly to introduce functionali-
ties at specific positions in lead compounds, in which case 
the orientation is predetermined by the structure of the latter. 
The orientational information provided by MCSS is impor-
tant for its use in the de novo design of large, multi-
functional ligands, as well as for improving lead compounds 
[96].  

4. ARTIFICIAL NEURAL NETWORKS (ANN) 

 Artificial neural network (ANN) methods are conven-
tional methods for dimension reduction. As in Multi Dimen-
sional Scaling (MDS), ANN is part of a non-linear mapping 
procedure to “rearrange” data objects in an efficient manner, 
and therefore to make a configuration that best approximates 
the experimental spaces. It moves objects around in the 
space defined by the specified number of possibilities or 
training sets, and then checks how well the distances be-
tween objects can be reproduced by the new configuration. 
In other words, ANN uses a minimization algorithm that 
evaluates different configurations with the goal of maximiz-
ing the goodness-of-fit, and to include this to the least set 
error as compared with the target value [4, 98].  

 QSAR techniques endeavor to find relationships among 
the properties of bioactive molecules and the biological re-
sponse they elicit when applied to a biological systems. The 
primary hypothesis is that changes in molecular properties 
give rise to different biological responses. There is a growing 
interest in the application of neural networks (NNs) in 
QSAR modeling. The special interest in NNs arises from 
their ability to carry out nonlinear mapping of the physico-
chemical descriptors to the corresponding biological activity 
implicitly [97-98]. A topological method that makes it possi-
ble to predict the properties of molecules on the basis of their 
chemical structures was applied for quinolone anti-microbial 
agents [99]. In this method it was made possible to verify the 
minimal inhibitory concentration (MIC) of quinolones. Scru-
tiny on the results showed that the experimental and calcu-
lated values have a high correlation that makes it possible to 
gain a QSAR explanation of the information contained in the 
network after training has been carried out. A nonlinear 
quantitative structure-anti-HIV-1-activity relationship (QSAR) 
study was realized in a series of 1-[2-hydroxyethoxy-methyl]-

6-(phenylthio) thymine] (HEPT) derivatives acting as non-
nucleoside reverse transcriptase inhibitors (NNRTIs). The 
usefulness of the model and the nonlinearity of the relation-
ship between molecular descriptors and anti-HIV-1 activity 
have been clearly demonstrated [100]. Anti-HIV-1 activities 
of 20 tetrapyrroles (hematoporphyrin derivatives, meso-tetra-
phenylporphyrins, a chlorine, and a phthalocyanine) were 
predicted based on their molecular structures using four non-
linear models with good predictive ability [101]. Since toxic-
ity is a general phenomenon observed in many groups of 
antibiotic chemical classes and yet a typical drug discovery 
program should include a screening of toxicity, therefore, 
ANN has recently been applied in toxicity predictions, in-
cluding several types of algorithms: back-propagation neural 
network, Bayesian-Regularized Neural Networks, and self-
organization map (SOM) [102]. All these cases have proved 
ANN to be a powerful tool in modeling the nonlinear data to 
be used in quantitative or qualitative modeling of various 
bioactive molecular designs.  

5. CONCLUSION 

 Synergy between theoretical and experimental data has 
proven to be a very powerful tool to elucidate and open new 
gates not only in chemistry related topics but also n drug 
discovery [103]. When the experimental results are in 
agreement with computational ones, it usually indicates a 
good consideration of influencing factors to result in a supe-
rior model to be used as a discovery tool. The in silico meth-
odologies discussed in this paper can be used in simulating 
or predicting the aspect of interaction between a main cellu-
lar target and the drug, as well as in the kinetics and entrance 
pathway through membranes, which may play a significant 
role in the antibiotic action. An in silico model is to produce 
close to experimental values; therefore, the key aspects af-
fecting such processes should be studied and fully elucidated 
for the infections, in particular those that are caused by intra-
cellular agent that seem more problematic to larger number 
of people around the globe.  

 A drug discovery hypothesis enjoys favorable considera-
tion if there are various means of testing it. Such approach 
can nicely satisfy the existing criteria predicting the drug 
target interactions and finally the biological activity. Compu-
tational studies by the help of quantum chemical methods 
have recently reached the levels of efficacy and accuracy that 
permit their application to the elucidation of active molecule 
mechanisms. While some parameters involved in the drug 
interactions and biological processes have been fairly well 
established by experimentation, such interactions may have 
not yet been probed by rigorous computational methods. The 
size of these molecules and the nature of the interactions 
involved would place the anticipated computational investi-
gations near the limits of state-of-the-art quantum chemical 
methods. Nevertheless, it is now feasible to treat this prob-
lem by the application of high-level ab initio methods, which 
predict chemical properties. However, exact mechanistic 
solutions are impossible for all but the simplest physical sys-
tems, and practical calculations always demand some level 
of approximation. In the case of small molecules, these ap-
proximations can be sufficiently valid that experimental 
properties are reliably predicted by computations. In this 
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sense, the predictions for larger molecules have to wait for 
sufficient calculated data, as well as computing capability.  

 Structure-based virtual screening utilizing docking algo-
rithms has become an essential tool in the drug discovery 
process, and significant progress has been made in success-
fully applying the technique to a wide range of receptor tar-
gets. In silico validation of virtual screening protocols before 
application to a receptor target using a corporate or commer-
cially available compound collection is the key to establish-
ing a successful process. The impact of ligand database pre-
processing has yet to be examined in the context of virtual 
screening and prioritization of compounds for biological 
evaluation. In our paper, we provided an insight into the im-
plications of cheminformatics and particular examples of 
anti-infective applications were mentioned.  

 The CPU consumption is well in relation to the docking 
protocol and finding the active molecules success rates in the 
screenings. Assessment of these parameters and the follow-
ing enrichments are highly dependent on the initial chem-
information treatment used in database construction. The 
interplay of SMILES representations, stereochemical infor-
mation, protonation state enumeration, and ligand conforma-
tion ensembles are critical in achieving optimum enrichment 
rates in such screening. Considering the lipophilic parame-
ters, they are useful for QSAR studies and the experimental 
values would bring a large participation in obtaining the sta-
ble outcome, of such experimental values, those obtained 
from reverse phase HPLC studies that can produce the lipo-
philicity data and log P are the more reliable ones. The 
QSAR study of bioactive compounds with anti-infective 
property had indicated that although the electronic and the 
steric parameters can best describe the antibacterial activity, 
the topologic parameters are of the most important group. 
The lipophilic properties by themselves do not improve the 
correlation, when they are included in the regression and 
neural network analysis; while topological indices play a 
superior role in the antibacterial activity prediction [104]. 
Cheminformatics with the capabilities providing in the field 
of drug discovery make numerous possibilities for further 
research, including some which may have practical utility in 
relation to general practice of treating infectious diseases and 
providing more efficient drugs. 
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